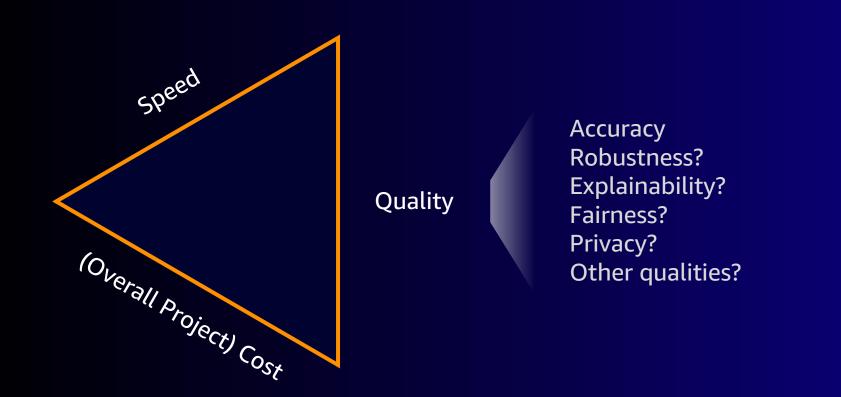


24 February 2022

# Train ML models quickly and cost-effectively with Amazon SageMaker

**Alex Thewsey** 

AI/ML Specialist Solutions Architect, AWS




### **Agenda**

- 1. Why optimize model training, and what to optimize for?
- 2. How model training works on Amazon SageMaker
- 3. Tools and tips for efficient training
- 4. Demo
- 5. Recap and resources



### **Priorities first: What are we optimizing for?**



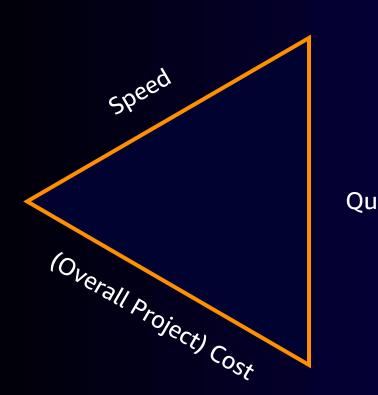


## **Priorities first: Training is only part of the story**

Inference may drive up to

90%

of ML project infrastructure costs


Focus on training can be a

## symptom

of organizational blockers to production deployment



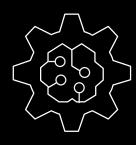
## Priorities first: What are we optimizing for?



Quality

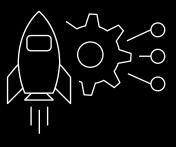
Accuracy
Robustness?
Explainability?
Fairness?
Privacy?
Other qualities?

We should expect some trade-offs, but hopefully can find some easy wins too




## Make use of pre-built algorithms and services




### **AWS AI Services**

Fully-managed services for both pre-trained and bring-your-owndata AI applications



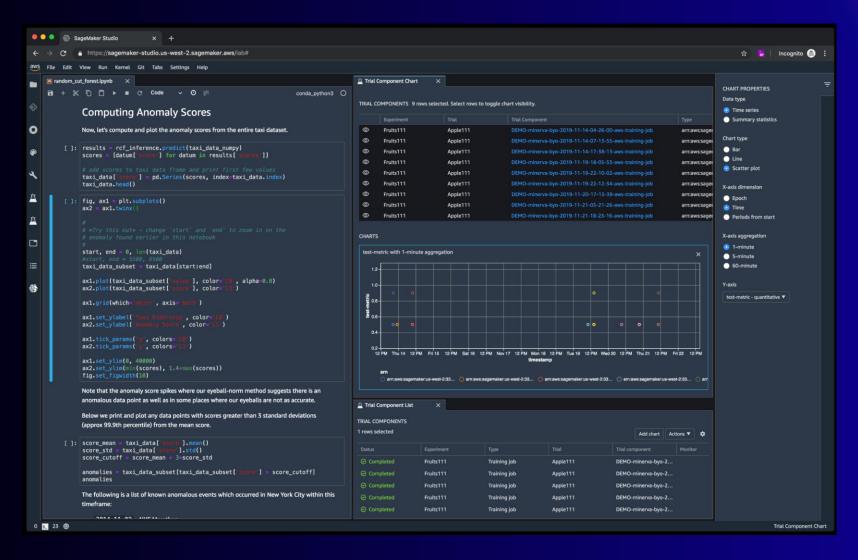
## SageMaker Built-In Algos & Marketplace

17+ families of SageMaker-native algorithms, plus more via AWS Marketplace



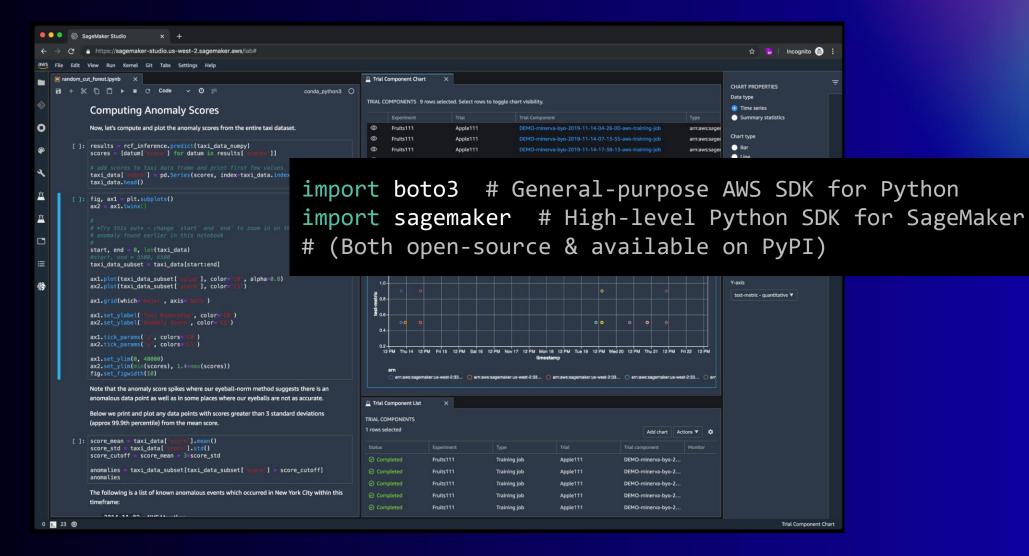
SageMaker Autopilot

Automated but transparent, end-to-end learning for tabular data




### SageMaker JumpStart

Deployable ML solution templates, additional algorithms and pretrained public models




"Work **from** the notebook, not **on** the notebook"





"Work **from** the notebook, not **on** the notebook"





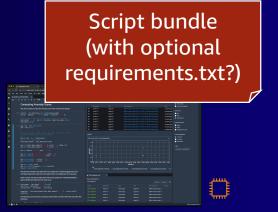
"Work **from** the notebook, not **on** the notebook"

Development environment: e.g. Amazon SageMaker Studio Amazon SageMaker Notebook Instances



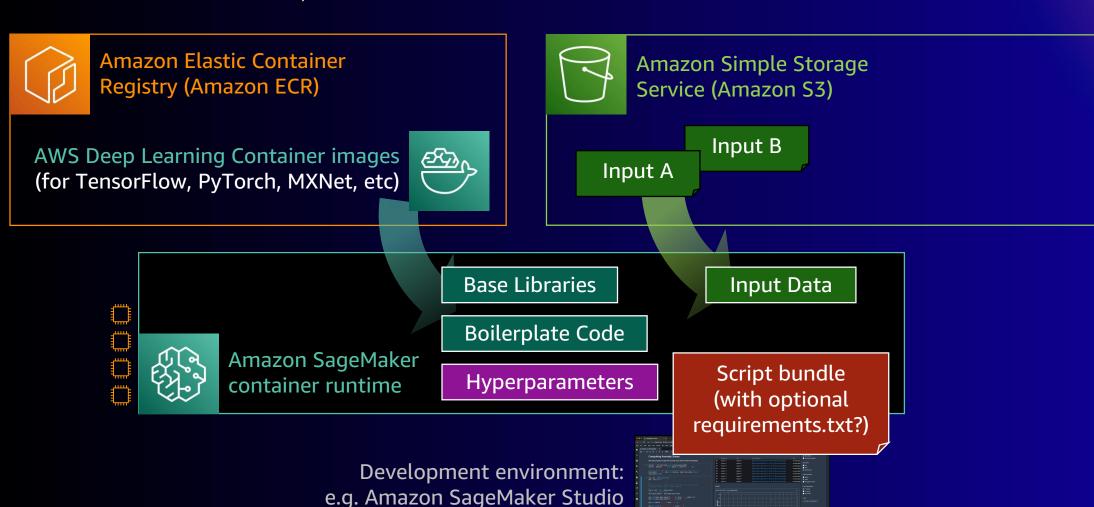


"Work *from* the notebook, not *on* the notebook"




AWS Deep Learning Container images (for TensorFlow, PyTorch, MXNet, etc)





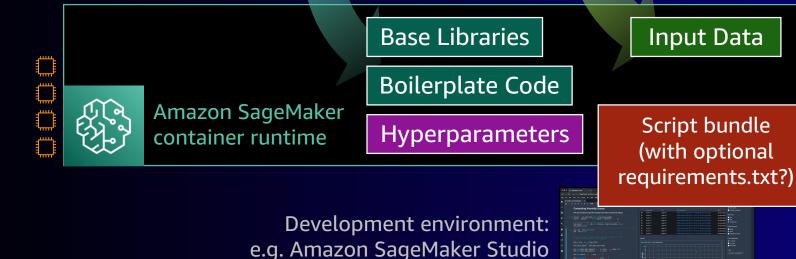

Development environment: e.g. Amazon SageMaker Studio Amazon SageMaker Notebook Instances





"Work **from** the notebook, not **on** the notebook"




Amazon SageMaker Notebook Instances



"Work *from* the notebook, not *on* the notebook"







Amazon SageMaker Notebook Instances

Experiment tracking
History search
Logs
Resource metrics
Algorithm metrics

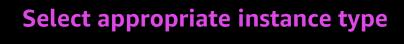


### Training compute setup and managed spot

#### (In your notebook)

```
estimator = Estimator(
    ...,
    use_spot_instances=True,
    max_run=60*60*4, # 4hrs training
    max_wait=60*60*8, # 8hrs total
    checkpoint_s3_uri="s3://...",

    instance_count=4,
    instance_type="ml.p3.8xlarge",
    ...,
)
```



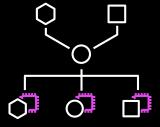

## **Enabling Amazon SageMaker Managed Spot** is simple

- Save up to 90% on compute costs!
- But as good practice, you should implement checkpointing

#### **Before scaling out, check:**

- Your framework and script are set up for multinode training (not just duplicating!)
- Input channel distributions (shard or replicate?)






## Amazon SageMaker distributed training libraries



### **Data Parallelism**

Scale out training clusters with near-linear efficiency, optimized for AWS networking and instance topology



### **Model Parallelism**

Train models too large to fit within GPU memory, with automated model splitting and sophisticated pipeline scheduling



### Optimize training with Amazon SageMaker Data Parallel



### **Data Parallelism**

Scale out training clusters with near-linear efficiency, optimized for AWS networking and instance topology



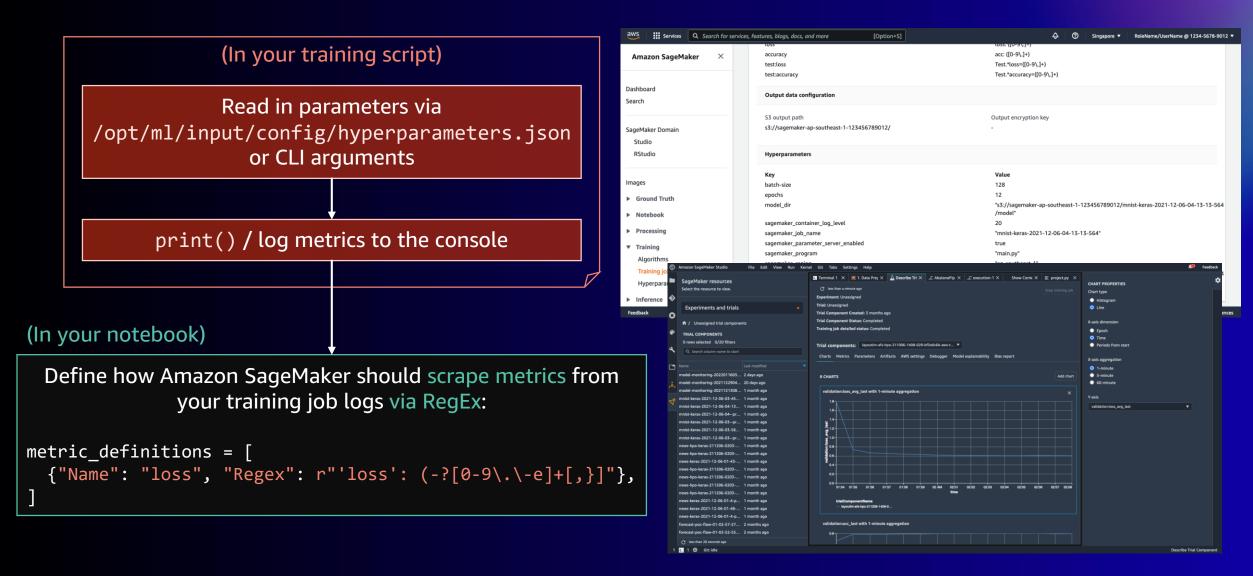
### Support for popular ML framework APIs

Re-use existing APIs such as Horovod and PyTorch DistributedDataParallel



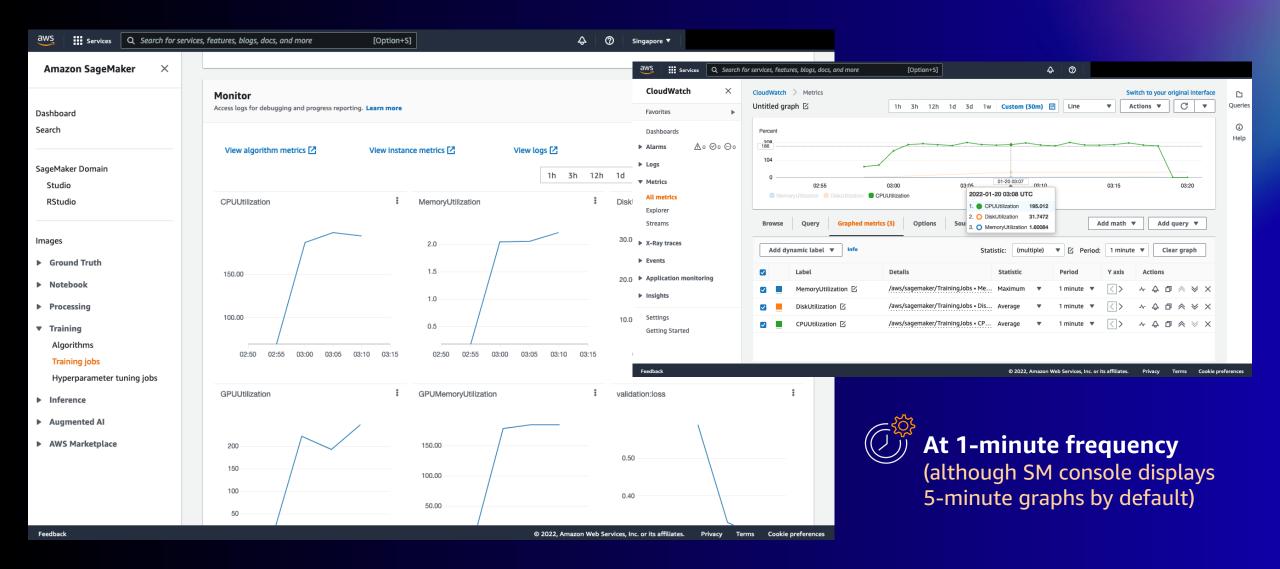
#### **Reduced training time**

~25% faster with synchronization across GPUs (as tested with BERT)




### Minimal code change

See SM Developer Guide for PyTorch & TensorFlow instructions – or use Hugging Face Trainer API scripts with no code changes at all!




## Tune (hyper)-parameters automatically





### Default Amazon SageMaker metrics via Amazon CloudWatch





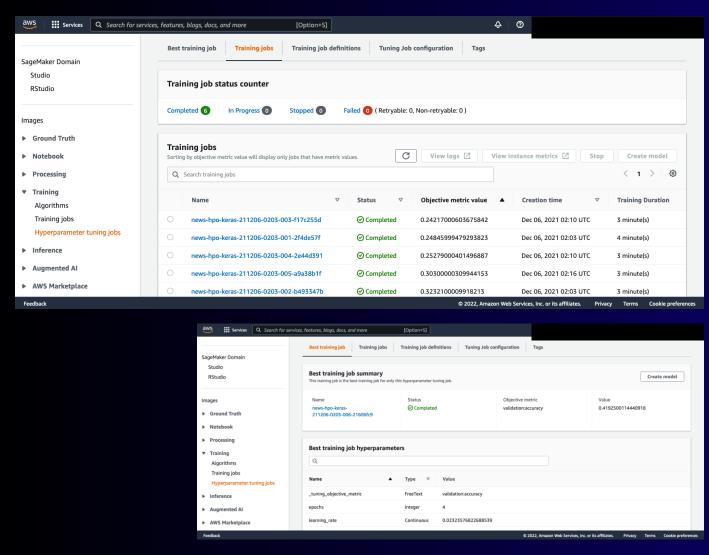
## Tune (hyper)-parameters automatically

```
(In your training script)

Read in parameters via
/opt/ml/input/config/hyperparameters.json
or CLI arguments

print() / log metrics to the console

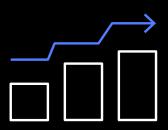
(In your notebook)
```


Define how Amazon SageMaker should scrape metrics from your training job logs via RegEx:

```
metric_definitions = [
    {"Name": "loss", "Regex": r"'loss': (-?[0-9\.\-e]+[,}]"},
]
```

```
Wrap your training job definition (or 'estimator')
    with automatic hyperparameter tuning!
sagemaker.tuner.HyperparameterTuner(
    estimator=...,
    metric definitions=[...],
    objective_metric_name="loss",
    objective_type="Minimize",
    hyperparameter ranges={
        "learning rate":
sagemaker.parameter.ContinuousParameter(
            min value=1e-8,
            max value=1e-3,
            scaling type="Logarithmic",
        ),
    strategy="Bayesian",
    max jobs=50,
    max parallel jobs=5,
    . . .
```

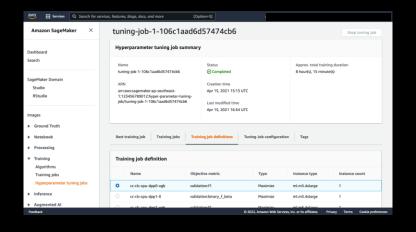



### Tune (hyper)-parameters automatically



```
Wrap your training job definition (or 'estimator')
    with automatic hyperparameter tuning!
sagemaker.tuner.HyperparameterTuner(
    estimator=...,
    metric definitions=[...],
    objective metric name="loss",
    objective type="Minimize",
    hyperparameter ranges={
        "learning rate":
sagemaker.parameter.ContinuousParameter(
            min value=1e-8,
            max value=1e-3,
            scaling type="Logarithmic",
    strategy="Bayesian",
    max jobs=50,
    max parallel jobs=5,
```

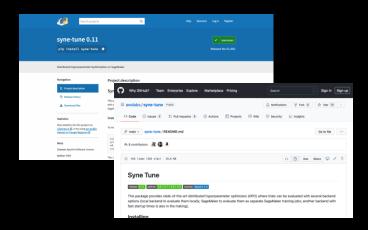



## **Advanced HPO tips**



### **Continue a previous search**

Warm-start the Bayesian optimizer to intelligently continue from previous HPO jobs


warm\_start\_config (sagemaker SDK)
 or WarmStartConfig (in API
 CreateHyperParameterTuningJob)



#### Multiple algorithms per HPO run

As used by Amazon SageMaker Autopilot! Searches may span multiple algorithms and container images

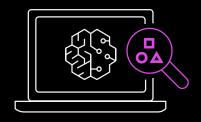
See TrainingJobDefinitions instead of TrainingJobDefinition in API!



### **Customize further: Syne Tune**

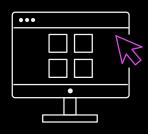
For advanced practitioners wanting more control than Amazon SageMaker's built-in HPO – see AWS Labs' open source Syne Tune library!

https://github.com/awslabs/syne-tune



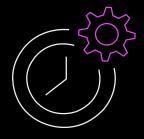

## Monitor and profile with Amazon SageMaker Debugger




## Capture data from training jobs

Apache MXNet
PyTorch
TensorFlow
XGBBoost




Real-time monitoring

Get deeper visibility into the training process as it runs



Automatic issue detection

Receive alerts to find and fix issues early, and accelerate prototyping



## Resource profiling recommendations

Find bottlenecks and optimize compute resources







Amazon SageMaker Training Job

**Training Script** 







Amazon SageMaker Training Job

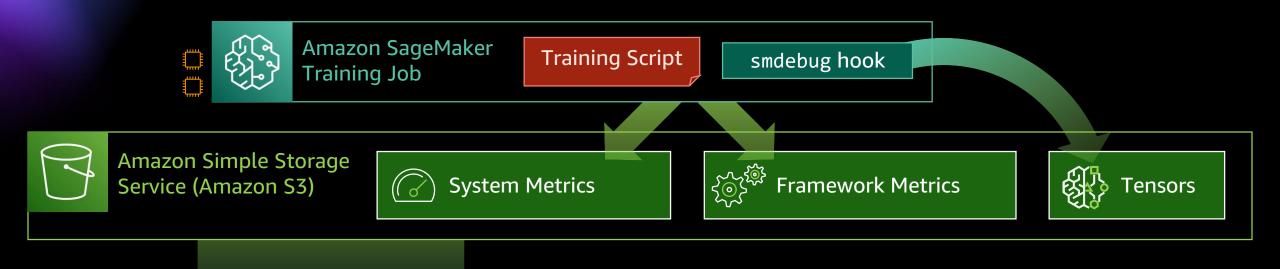
**Training Script** 

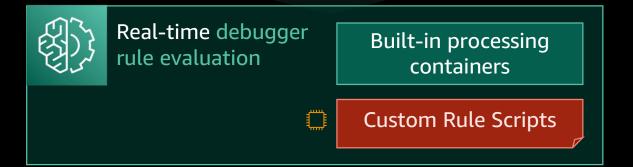
smdebug hook



Amazon Simple Storage Service (Amazon S3)




**System Metrics** 




Framework Metrics



Tensors











Amazon SageMaker Training Job

**Training Script** 

smdebug hook



Amazon Simple Storage Service (Amazon S3)



**System Metrics** 



Framework Metrics



Tensors



Real-time debugger rule evaluation

Built-in processing containers



**Custom Rule Scripts** 



Create custom plots with Amazon SageMaker notebooks



**View interactive reports** with Amazon SageMaker Studio



Trigger notifications, early stopping, and other actions

with Amazon CloudWatch Events



### Performance: Amazon SageMaker Debugger Profiler



calls, change distributed training strategy

Number of times the rule triggered: 209

LowGPUUtilization <a>Image: Irule description</a>.

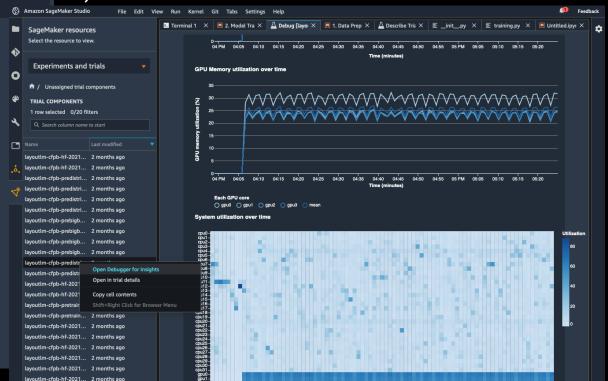
Choose a larger instance type with more memory (if it is not a memory leak) or apply model parallelism (SageMaker Distributed)

Number of times the rule triggered: 175

Number of violations: 175

layoutlm-cfpb-prebigb... 2 months ago

increase batch-size.


Rule parameters: threshold\_p95: 70% threshold\_p5: 10%

patience: 1000

For more information, see the

Number of violations: 209
Number of datapoints: 10318

```
estimator = PyTorch( # Or TensorFlow, MXNet, etc
...,
    profiler_config=sagemaker.debugger.ProfilerConfig(
        system_monitor_interval_millis=100,
        framework_profile_params=sagemaker.debugger.FrameworkProfile(),
    ),
    ``
```





**Granular system metrics** down to 100ms interval



**Interactive reports** with downloadable options



**Automatic recommendations** to resolve bottlenecks



**Extra options** 

for operator, data-loader, and Python function profiling



### **Optimize training data input**



Amazon Simple Storage Service (Amazon S3)

Most common, feature-rich option, with advanced data lake capabilities



Amazon FSx for Lustre

High-performance file system optimized for ML and HPC workloads



Amazon Elastic File System (Amazon EFS)

Consider mainly just if your source data is already on Amazon EFS today



## **Optimize training data input**



## Amazon Simple Storage Service (Amazon S3)

Most common, feature-rich option, with advanced data lake capabilities



#### Amazon FSx for Lustre

High-performance file system optimized for ML and HPC workloads



## Amazon Elastic File System (Amazon EFS)

Consider mainly just if your source data is already on Amazon EFS today



#### File Mode (Default)

Up-front download to local filesystem before your job starts



#### **Pipe Mode**

Stream data for serial access (usually needing code changes)



#### Fast File Mode (NEW 2021)

File-like access backed by on-demand streaming!



## **Optimize training data input**



Amazon Simple Storage Service (Amazon S3)

Most common, feature-rich option, with advanced data lake capabilities



Amazon FSx for Lustre

High-performance file system optimized for ML and HPC workloads



Amazon Elastic File System (Amazon EFS)

Consider mainly just if your source data is already on Amazon EFS today





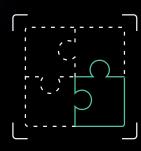
#### File Mode (Default)

Up-front download to local filesystem before your job starts



#### Pipe Mode

Stream data for serial access (usually needing code changes)




### Fast File Mode (NEW 2021)

File-like access backed by on-demand streaming!

```
estimator.fit({
   "train": sagemaker.inputs.TrainingInput(
        "s3://doc-example-bucket/a-folder/",
        input_mode="FastFile",
    ),
    ...,
})
```

## Other start-up optimization tips



## Don't use the whole dataset until needed

Initial, basic, functional tests should use small subsets of the data

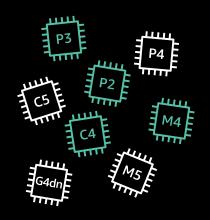


## Preprocess your data for performance

Avoid huge numbers of tiny files

Explore optimized formats like RecordIO & TFRecord

Amazon SageMaker Processing can help you scale out!




## Build-in common dependencies

requirements.txt is convenient but repetitive

Deriving images 'FROM' AWS DLCs may be easier!

Smaller containers can start jobs faster



## Instance type can affect start-up time

If working in an environment that supports docker, consider Amazon SageMaker Local Mode for initial functional tests



## Demo



### **Recap and resources**

#### Recap

- Amazon SageMaker Managed Spot Instances
- 2. Amazon SageMaker Distributed Libraries
- 3. Amazon Metrics and Automatic Hyperparameter Tuning
- 4. Amazon SageMaker Debugger and Profiler
- 5. Amazon Input Optimization including Fast File Mode and Amazon FSx for Lustre

#### Resources

Amazon SageMaker developer guide: <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/">https://docs.aws.amazon.com/sagemaker/latest/dg/</a>

Amazon SageMaker Python SDK documentation: <a href="https://sagemaker.readthedocs.io/en/stable/">https://sagemaker.readthedocs.io/en/stable/</a>

Amazon SageMaker repository: <a href="https://github.com/aws/amazon-sagemaker-examples">https://github.com/aws/amazon-sagemaker-examples</a>

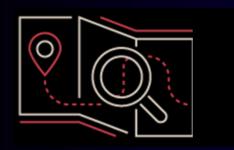
AWS ML blog: <a href="https://aws.amazon.com/blogs/machine-learning/">https://aws.amazon.com/blogs/machine-learning/</a>



## Visit the AI & Machine Learning resource hub for more resources

Dive deeper into these resources, get inspired and learn how you can use Al and machine learning to accelerate your business outcomes.

- The machine learning journey e-book
- 7 leading machine learning use cases e-book
- A strategic playbook for data, analytics, and machine learning e-book Accelerate machine learning innovation with the right cloud services & infrastructure e-book
- Choosing the right compute infrastructure for machine learning e-book
- Improving service and reducing costs in contact centers e-book
- Why ML is essential in your fight against online fraud e-book
- ... and more!




https://bit.ly/3mwi59V

Visit resource hub

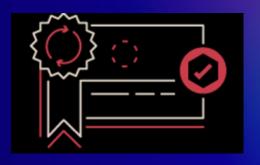


## **AWS Machine Learning (ML) Training and Certification**



AWS is how you build machine learning skills

Courses built on the curriculum leveraged by Amazon's own teams.
Learn from the experts at AWS.


aws.training/machinelearning



## Flexibility to learn your way

Learn online with on-demand digital courses or live with virtual instructor-led training, plus hands-on labs and opportunities for practical application.

explore.skillbuilder.aws/learn



## Validate your expertise

Demonstrate expertise in building, training, tuning, and deploying machine learning models with an industry-recognized credential.

aws.amazon.com/certification



## Thank you for attending AWS Innovate – AI/ML Edition

We hope you found it interesting! A kind reminder to **complete the survey.**Let us know what you thought of today's event and how we can improve the event experience for you in the future.

- aws-apj-marketing@amazon.com
- twitter.com/AWSCloud
- f facebook.com/AmazonWebServices
- youtube.com/user/AmazonWebServices
- slideshare.net/AmazonWebServices
- twitch.tv/aws



# Thank you!

**Alex Thewsey** 

