aws

S

aws INNOVATE

FOR EVERY APPLICATION EDITION

25 August, 2022

. or its affiliates. All rights reserved.



Resiliency and availability design
patterns for the cloud

Chandra Munibudha

Principal Solutions Architect
AISPL

aws
2



mlay's agenda

“* Scope of Resiliency

+» Resilient Architectures

Timeouts, Retries with jitter
Load Shedding

Constant Work

Static Stability

Shuffle Sharding

Tra—



A
What is resiliency?

“Resilience is the ability
of a system to adapt or
keep working when
challenges occur”

aws
. S



AWS whitepaper definition
Disaster

MTTR

« RTO (Recovery Time) + MTBF (Mean Time Between Failures)
« RPO (Recovery Point) + MTTR (Mean Time to Recover)

aws
2

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.




tegories of failure

TYPES OF FAILURE

A
Fﬁgh/T ““““ (§3)

Operator error /
bad deployment

~~~~~ “~~._ Loadinduced
g -
2%
Component /
host failure
©
8 .
Control plane / ~~_ :
E network interruptions \\'En;;ri(leurra;ck
— N
) s
-1
\‘\
Datacentre
. interruptions
Design for
High Availability
Rare

Design for
Disaster Recovery

Regional
~<_ natural disaster

T_T All of Internet

failure

g @%ﬁ I

\———

All of provider

BN ~_ disruption
“ve._

~
~

~

~~

Space junk

e
Low

s

Impact

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Resilient Design Patterns

aws
2



ment-side patterns

* Timeouts - maximum amount of time that a client (or calling
dependency) waits for a request to complete.

* Retries - survive random partial failures and short-lived transient
failures

» Use backoff — Increase the time between subsequent retries,
which keeps the load on the backend even

* Jitter - This is a random amount of time before retrying a
request to help prevent large simultaneous bursts

‘I © 2022, Amazon Web Services, Inc. or its affiliates. All rights rese


https://tinyurl.com/bhjbsk67

Timeouts, retries, and backoff with jitter

[

Would you like to be notified of new content?

Timeouts, retries, and backoff with jitter

ARCHITECTURE | LEVEL 200

By Marc Brooker
@ ArTicLe conTENT

Introduction

Failures Happen
Timeouts

Whenever one service or system calls another, failures can happen. These failures can come from a variety of factors. They include
Retries and backoff servers, networks, load balancers, software, operating systems, or even mistakes from system operators. We design our systems to
Jitter reduce the probability of failure, but impossible to build systems that never fail. So in Amazon, we design our systems to tolerate and
reduce the probability of failure, and avoid magnifying a small percentage of failures into a complete outage. To build resilient systems,

Conclusion we employ three essential tools: timeouts, retries, and backoff.

Many kinds of failures become apparent as requests taking longer than usual, and potentially never completing. When a client is waiting
longer than usual for a request to complete, it also holds on to the resources it was using for that request for a longer time. When a
number of requests hold on to resources for a long time, the server can run out of those resources. These resources can include memory,
threads, connections, ephemeral ports, or anything else that is limited. To avoid this situation, clients set timeouts. Timeouts are the
maximum amount of time that a client waits for a request to complete.

Often, trying the same request again causes the request to succeed. This happens because the types of systems that we build don't often
fail as a single unit. Rather, they suffer partial or transient failures. A partial failure is when a percentage of requests succeed. A transient

failure is when a request fails for a short period of time. Retries allow clients to survive these
transient failures by sending the same request again.

aWS It's not always safe to retry. A retry can increase the load on the system being called, if th aWS:a mazon 'com/bu I l'.d € rsn_ll b ra rV/tI meOUts_
~ P approaching an overload. To avoid this problem, we implement our clients to use backoff retrl es_a n d_ba ckoff-wrth_l |tte r/

I retries, which keeps the load on the backend even. The other problem with retries is that



https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/

Serer/ Backend patterns

* Load Shedding - avoid brownout by rejecting excess load.

* Constant Work - survive random partial failures and short-lived transient
failures.

 Static Stability — the overall system keeps working even when a dependency
becomes impaired.

» Shuffle Sharding — Isolating customers/resources to virtual shards and reduce
overall impact of bad requests.

.‘ ~ =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserve:



Load Shedding




.
Load Shedding

Latency vs throughput

250 /

— N
Ul o
(@) (@)
\

Minimum latency (ms)

=
9y o
o o

o

Throughput (TPS)

—|atency

aws

. 7 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.




Load Shedding

(total brownout)

Latency vs throughput

250
E 00
> (client timeout)
aE
T!:E; 100
E __r_e/
= 50

o

Throughput (TPS)

—=|atency - -Client Timeout

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

aws




Load Shedding

2 . N

Amazon Bullders' Library / ... Would you like to be notified of new content?

Using load shedding to avoid overload

SOFTWARE DELIVERY AND OPERATIONS | LEVEL 400

By David Yanacek (& POF
O ARTICLE CONTENT Kindle

Introduction For a few years, | worked on the Service Frameworks team at Amazon. Our team wrote tools that helped the owners of AWS services such
as Amazon Route 53 and Elastic Load Balancing build their services more quickly, and service clients call those services more easily. Other
Amazon teams provided service owners with functionality such as metering, authentication, monitoring, client library generation, and
Testing documentation generation. Instead of each service team having to integrate those features into their services manually, the Service
Frameworks team did that integration once and exposed the functionality to each service through configuration.

The anatomy of overload

Visibility
Load shedding One challenge we faced was in determining how to provide sensible defaults, especially for features that were performance or

mechanisms availability related. For example, we couldn’t set a default client-side timeout easily, because our framework had no idea what the

s latency characteristics of an API call might be. This wouldn’t have been any easier for service owners or clients to figure out themselves,
Thinking about overload

: so we kept trying, and gained some useful insights along the way.
differently

One common question we struggled with was determining the default number of co

Further reading
clients at the same time. This setting was designed to prevent a server from taking o

specifically, we wanted to configure the maximum connections settings for the serve dws.dmdzon.co m/b u I lders_ ll b ra rV/USi n q_

aws load balancer. This was before the days of Elastic Load Balancing, so hardware load b load_sheddinq_to_avoid_ove rloa d/
S

We set out to help Amazon service owners and service clients figure out the ideal val



Static stability




ntrol Plane and Data Plane

MODULAR SEPARATION CREATES STATIC STABILITY

Control /

Plane

Clients \

/ Data

«— Plane

\ Clients

‘ © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.




atic Stability

Control /
Plane —
Cllents

‘ © 2022, Amazon Web Services, Inc. . or its affiliates. All ri ights reserved.
I

/ Data

«— Plane
Cllents




tlc Stability

I

Control /

Plane —
Cllents

/ Data

«— Plane
Cllents

‘ © 2022, Amazon Web Services, Inc. . or its affiliates. All ri ights reserved.




Static Stability

7 =

Amazon Bullders' Library / ... Would you like to be notified of new content?

Static stability using Availability Zones

ARCHITECTURE | LEVEL 300

By Becky Weiss and Mike Furr PDF
@ armicLe conTEnT idle

Introduction At Amazon, the services we build must meet extremely high availability targets. This means that we need to think carefully about the

Static stability dependencies that our systems take. \We design our systems to stay resilient even when those dependencies are impaired. In this article,
we'll define a pattern that we use called static stability to achieve this level of resilience. We'll show you how we apply this concept to

Static stability patterns Availability Zones, a key infrastructure building block in AWS and therefore a bedrock dependency on which all of our services are built.

Under the hood: Static

stability inside of In a statically stable design, the overall system keeps working even when a dependency becomes impaired. Perhaps the system doesn't

Amazon EC2 see any updated information (such as new things, deleted things, or modified things) that its dependency was supposed to have
delivered. However, everything it was doing before the dependency became impaired continues to work despite the impaired

Conclusion dependency. We'll describe how we built Amazon Elastic Compute Cloud (EC2) to be statically stable. Then we'll provide two statically
stable example architectures we've found useful for building highly available regional systems on top of Availability Zones.

Finally, we'll go deeper into some of the design philosophy behind Amazon EC2 including how it's architected to provide Availability
Zone independence at the software level. In addition, we'll discuss so lce
architecture.

aws.amazon.com/builders-library/static-
stability-using-availability-zones

The role of Availability Zones
aws
S Availability Zones are logically isolated sections of an AWS Region: Eac
operate independently. Availability Zones are physically separated by a




Simple designs and constant w

aws
2



.

Simple designs and constant work

« Risk is often proportionate to rates of change in systems

« Example: a spike in load can slow down a system, which can cause knock-on
and cascading effects

« Reducing dynamism in systems is a great way to make them simpler

« A counter-intuitive solution is to run the system at “maximum” load all the
time, every time

aws

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.




mnple designs and constant work

PUSH Ve, PULL
AWS Hyperplane AWS Hyperplan
Node Node Node Node Node Node Node Node

S\ AL

=i

Configuration Configuration Amazon S3
agent agent bucket

T T
88% 88%

Users Users

k © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Simple designs and constant work

2 . N

Would you like to be notified of new content?

Reliability, constant work, and a good
cup of coffee

ARCHITECTURE | LEVEL 300

By Colm & PDF

@ ArmicLe conTent MacCérthaigh

Introduction One of my favorite paintings is “Nighthawks" by Edward Hopper. A few years ago, | was lucky enough to see it in person at the Art
Computers: They do Institute of Chicago. The painting's scene is a well-lit glassed-in city diner, late at night. Three patrons sit with coffee, a man with his back
exactly as you tell them to us at one counter, and a couple at the other. Behind the counter near the single man a white-coated server crouches, as if cleaning a

coffee cup. On the right, behind the server loom two coffee urns, each as big as a trash can. Big enough to brew cups of coffee by the
Amazon Route 53 health hundreds.

checks and healthiness

Coffee urns like that aren’t unusual. You've probably seen some shiny steel ones at many catered events. Conference centers, weddings,
Amazon S3 as a

- . i s i i i 5 ig? Because
configuration loop movie sets. . . we even have urns like these in our kitchens at Amazon. Have you ever thought about why coffee urns are so big u

they are always ready to dispense coffee, the large size has to do with constant work.
Constant work and self-
healing

Design and

o manageability aws.amazon.com/builders-
e The value of a simple e - liDrary/reliability-and-constant-work

design


https://aws.amazon.com/builders-library/reliability-and-constant-work/

Shuffle Sharding




Fditional architecture
l 211 ¢ w nf

--------------------------------------------------------------------

-----------------------------------------------------------------------------------------------

Scope of impact = All customers

‘ © 2022, Amazon Web Services, Inc. . or its affiliates. All ri ights reserved.




Combining Partitioning and
Replication

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.




‘ © 2022, Amazon Web Services, Inc. . or its affiliates. All ri ights reserved.




et

P |

et ettt
|
|
|
)
)
)
-4

-

i

?

I |

el ettt

|

|

)

)

)

)
remmecedeccccao

)
=
-

=

(]

-———-—

Customers

Scope of impact

(%2}
©
sl
0
L
Vg

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.




5ufﬂe sharding
E 211 @ word

dl1 21 ¢1 X1 wor 2o e 2

|

By choosing two instances from eight there are 56 potential shuffle shards, much
more than the four simple shards we had before.

-' i -;i © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Kufﬂe sharding




mufﬂe sharding



‘ufﬂe sharding

¢l i m‘ix Bl ot 26 wd 24

@ © 9 © © © © ©

Customers

Scope of impact = —
Combinations

*retry logic in the client to try every endpoint in a Shuffle Shard, until one succeeds

‘ © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Shuffle Sharding

« Needs a client that retires or is fault tolerant

« Needs a routing mechanism - per customer DNS name, per resource DNS name
of Shuffle sharding aware router

- Sharding strategy - customer id, customer-resource-operation-type,
multidimensional sharding

aws

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.




Shuffle Sharding

aws

N

f

Amazon Builders' Library

Would you like to be notified of new content?

Workload isolation using shuffle-

sharding

ARCHITECTURE | LEVEL 400

o ARTICLE CONTENT
Introduction
Taking on DNS hosting
Handling DDoS attacks
What is shuffle sharding?

Amazon Route 53 and
shuffle sharding

Conclusion

Hands-on lab

By Colm MacCarthaigh ) PDF
Kindle

Today, Amazon Route 53 hosts many of the world’s biggest businesses and most popular websites, but its beginnings are far more
humble.

Taking on DNS hosting

Not long after AWS began offering services, AWS customers made clear that they wanted to be able to use our Amazon Simple Storage
Service (53), Amazon CloudFront, and Elastic Load Balancing services at the “root” of their domain, that is, for names like “amazon.com”
and not just for names like “www.amazon.com”.

That may seem very simple. However, due to a design decision in the DNS protocol, made back in the 1980s, it's harder than it seems.
DNS has a feature called CNAME that allows the owner of|
doesn’t work at the root or top level of a domain. To servé

sty 2WS.amazon.com/builders-library/workload-isolation-

Elastic Load Balancing. These services are constantly expaj

easily hard-code in their domain configurations either. USi nCI'Sh Ufﬂ.e'Sha rd i nCl




mmary

1. Timeouts, Retries — Use timeouts on any remote or inter-process calls. Think of idempotency while retrying.

2. Load Shedding - Avoid overloading. Understand the cost of rejecting a request. Categorize your incoming
request types and decide which ones to shed.

3. Static Stability — Build some redundancy into your data plane so that they can continue to work despite
control plane failure.

4. Constant Work — Work that a system does should be idempotent in nature and not get affected by variations
in load or stress.

5. Shuffle Sharding — Applying fault isolation to traditional horizontal scaling.

‘ © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.


https://aws.amazon.com/builders-library/

aws

e

Thank you for attending AWS Innovate -
For Every Application Edition

We hope you found it interesting! A kind reminder to complete the survey.
Let us know what you thought of today’s event and how we can improve the event

experience for you in the future.

aws-apj-marketing@amazon.com

twitter.com/AWSCloud
facebook.com/AmazonWebServices
youtube.com/user/AmazonWebServices
slideshare.net/AmazonWebServices

twitch.tv/aws

© 2022, Amazon Web Services,

, Inc. or its affiliates. All rights reserved.



-

Thank you!




