
© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

2 5 A u g u s t , 2 0 2 2

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Resiliency and availability design
patterns for the cloud

Chandra Munibudha

Principal Solutions Architect

AISPL

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Today’s agenda

❖ Scope of Resiliency

❖ Resilient Architectures

Timeouts, Retries with jitter

Load Shedding

Constant Work

Static Stability

Shuffle Sharding

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is resiliency?

“Resilience is the ability
of a system to adapt or
keep working when
challenges occur”

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS whitepaper definition

RPO

MTBF

Resiliency

Disaster

Recovery

Availability

RTO

MTTR

• MTBF (Mean Time Between Failures)

• MTTR (Mean Time to Recover)
• RTO (Recovery Time)

• RPO (Recovery Point)

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Categories of failure

L
ik

e
li

h
o

o
d

ImpactLow

High

High

Operator error /

bad deployment

Load induced

Component /

host failure

Control plane /

network interruptions
Entire rack

failure

Datacentre

interruptions

All of Internet

failure

All of provider

disruption

Space junkRare

Design for

High Availability

Regional

natural disaster

Design for

Disaster Recovery

TYPES OF FAILURE

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Resilient Design Patterns

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Timeouts - maximum amount of time that a client (or calling

dependency) waits for a request to complete.

• Retries - survive random partial failures and short-lived transient

failures

• Use backoff – Increase the time between subsequent retries,

which keeps the load on the backend even

• Jitter - This is a random amount of time before retrying a

request to help prevent large simultaneous bursts

Client-side patterns

AWS Resilience Workshop: https://tinyurl.com/bhjbsk67

https://tinyurl.com/bhjbsk67

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Timeouts, retries, and backoff with jitter

aws.amazon.com/builders-library/timeouts-

retries-and-backoff-with-jitter/

https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Server/Backend patterns

• Load Shedding – avoid brownout by rejecting excess load.

• Constant Work - survive random partial failures and short-lived transient

failures.

• Static Stability – the overall system keeps working even when a dependency

becomes impaired.

• Shuffle Sharding – Isolating customers/resources to virtual shards and reduce

overall impact of bad requests.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Load Shedding

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Load Shedding

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Load Shedding

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Load Shedding

aws.amazon.com/builders-library/using-

load-shedding-to-avoid-overload/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Static stability

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Control Plane and Data Plane

MODULAR SEPARATION CREATES STATIC STABILITY

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Static Stability

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Static Stability

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Static Stability

aws.amazon.com/builders-library/static-

stability-using-availability-zones

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Simple designs and constant work

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Simple designs and constant work

• Risk is often proportionate to rates of change in systems

• Example: a spike in load can slow down a system, which can cause knock-on
and cascading effects

• Reducing dynamism in systems is a great way to make them simpler

• A counter-intuitive solution is to run the system at “maximum” load all the
time, every time

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Simple designs and constant work

Node Node Node Node

Configuration

agent

Users

PUSH

AWS Hyperplane

Amazon S3

bucket

Node Node Node Node

Configuration

agent

Users

PULLVS.

AWS Hyperplane

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Simple designs and constant work

aws.amazon.com/builders-

library/reliability-and-constant-work

https://aws.amazon.com/builders-library/reliability-and-constant-work/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shuffle Sharding

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Traditional architecture

Scope of impact = All customers

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Combining Partitioning and
Replication

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Sharding

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Sharding

Scope of impact =

Customers

Shards

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shuffle sharding

By choosing two instances from eight there are 56 potential shuffle shards, much

more than the four simple shards we had before.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shuffle sharding

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shuffle sharding

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shuffle sharding

Scope of impact =
Customers

Combinations

*retry logic in the client to try every endpoint in a Shuffle Shard, until one succeeds

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shuffle Sharding

• Needs a client that retires or is fault tolerant

• Needs a routing mechanism – per customer DNS name, per resource DNS name
of Shuffle sharding aware router

• Sharding strategy - customer id, customer-resource-operation-type,
multidimensional sharding

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shuffle Sharding

aws.amazon.com/builders-library/workload-isolation-

using-shuffle-sharding

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Summary

1. Timeouts, Retries – Use timeouts on any remote or inter-process calls. Think of idempotency while retrying.

2. Load Shedding - Avoid overloading. Understand the cost of rejecting a request. Categorize your incoming

request types and decide which ones to shed.

3. Static Stability – Build some redundancy into your data plane so that they can continue to work despite

control plane failure.

4. Constant Work – Work that a system does should be idempotent in nature and not get affected by variations

in load or stress.

5. Shuffle Sharding – Applying fault isolation to traditional horizontal scaling.

https://aws.amazon.com/builders-library/

https://aws.amazon.com/builders-library/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you for attending AWS Innovate –
For Every Application Edition

We hope you found it interesting! A kind reminder to complete the survey.

Let us know what you thought of today’s event and how we can improve the event

experience for you in the future.

aws-apj-marketing@amazon.com

twitter.com/AWSCloud

facebook.com/AmazonWebServices

youtube.com/user/AmazonWebServices

slideshare.net/AmazonWebServices

twitch.tv/aws

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

