aws INNOVATE

DATAEDITION

23 August, 2022

aws

N’ . or its affiliates. All rights reserved.

Build high-performance and resilient real-time
applications with Amazon ElastiCache and
MemoryDB for Redis

Orlando Andico

Senior Solutions Architect
Amazon Web Services

aws
~—

Agenda

= Why performance matters
= Why Redis
= Amazon ElastiCache for Redis
= Amazon MemoryDB for Redis

= Demo

aws

N7 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why performance matters

aws
=

Why performance matters

Slow site? . . .
100% “A 100-millisecond delay in website load

time can hurt conversion rates by 7 percent"

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

"A two-second delay in web page load time
increases bounce rate by 103 percent"

— 2017 Akamai Study

Customers

m Will leave m Purchase from similar retailer ® Will not return

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Current customer challenges
Lack of flexibility, ability to perform ultra-fast processing of massive amounts of data, and
high cost

Customers need:

High-performance Developer friendly, Massive parallel Lower Tot.al cost
with durability and easy-of-use processing of Data of ownership (TCO)
scalability

M © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Use cases for in-memory datastores

s =B B &
olol000 e — —o——

Caching Real-time Gaming Geospatial Media
analytics leaderboards streaming

.o Lh %ﬁ}
Ik
O
Session Chat apps Message Machine
store queues learning

. > > © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why Redis?

aws
=

Why Redis?

#1 in-memory datastore, #1 key-value database, most loved database

Rank Score
Jul Jun Jul DBMS Database Model Sl b
2022 2022 2021 2022 2022
1. : . Redis 3 Key-value, Multi-model @ 173.62 -1.69
Amazon DynamoDB [3 Multi-model g 83.94 +0.05
Microsoft Azure Cosmos DB £ Multi-model g 40.08 -0.90
Memcached Key-value 24.12
etcd Key-value 10.43 -0.37
.: i : 5. Hazelcast Key-value, Multi-model g 10.15 -0.23
* https://db-engines.com/en/ranking/key-value+store
Developers love it because:
1. Blazing fast
2. Versatile
3. Feature rich and easy to use
4. Open source + cloud
aws

N7 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://db-engines.com/en/ranking/key-value+store

Self-managing Redis is challenging and time-consuming

Difficult Hard to make Difficult :
: : Expensive
to manage highly available to scale
Manage server provisioning, Need to implement Online scaling can be error Invest in people, processes,
software patching, setup, fast error detection prone, replication hardware, and software

configuration, and backups and remediation performance needs

to be monitored, Real-time demands often

Time better spent on building inelastic have huge spikes

compelling customer
experiences

aws

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Purpose-built databases

: K _7

SRS
¥ N

Amazon Amazon

Aurora Relational DynamoDB
Database

Service
(RDS)

aws
. ~—

L W
)
; s
v
N N
Q {
Amazon Amazon
DocumentDB

N

$

$

&Q

/e\s\

(SN
&r *

{
NG

X
v IR

=)
S

Amazon

ElastiCache
+

2

Amazon
MemoryDB

|

S =

Amazon Amazon Amazon
Neptune Timestream Quantum
Ledger
DEIELERS
(QLDB)

Amazon
Managed
Apache
Cassandra
Service
(MCS)

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserve

Amazon ElastiCache and
Amazon MemoryDB for Redis pr

Amazon ElastiCache - Fully Managed Service

Redis & Extreme Secure Easily scales to
Memcached compatible performance and reliable massive workloads
(A /@ =
Fully compatible with In-memory data store Network isolation, encryption Scale reads and writes
open source Redis and cache for microsecond at rest/transit, HIPAA, PCl, with sharding
and Memcached response times FedRAMP, multi AZ, global and replicas
datastore, and automatic
failover

aws

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon ElastiCache
Built on the full power of AWS

[S]

« Available in all AWS regions
« Multi-AZ auto failover

* Global datastore - cross region replication =¥

« Up to 250 nodes per cluster (500 soon)

« Up to 170TB database

« ~ 50 million reads and ~10 million writes/sec
« T2, M5, R5 node support

* Scheduled snapshot support

« Scale out/in (sharded configuration)

* Scale up/down (all configurations)

aws

N7 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon MemoryDB for Redis

Redis-compatible, durable, in-memory database service that delivers ultra-fast

performance
Ultra-fast Redis Durability and
performance compatibility high availability
Microsecond read and Flexible and friendly Redis Multi-AZ transactional log
single-digit millisecond APls and data structures for durability and high
write latencies with availability

millions of TPS

Fully managed High Scalability Security
AWS-managed hardware More than 100 TB of Amazon VPC, encryption

and software setup, storage per cluster at-rest and in-transit,
configuration, monitoring, (with 1 replica per shard) Access Control List (ACL)

and snapshots

. > > © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fast: In-memory performance with Multi-AZ Durability

« Database design

= All data in memory

= All writes committed to Multi-AZ
transactional log

= Dynamic sharding and replication

. : Amazon MemoryDB - i- L l t
Modern, microservices for Redis o oy rans o e OW a e n C
55 reds ores d: iple
-Tas

applications
an etai

Redis-compatible, durable,
in-memory database

» Microsecond reads

= Single-digit millisecond writes

« High throughput
= Sharded parallelism and pipelined writes
= Millions of TPS

aws

N7 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Ultra-fast performance

high traffic: read throughput (r6g.1€ ge) 1h 3h 12h 1d 3d 1w cus

« Access data with microsecond read
and single-digit millisecond write
latency

« Amazon MemoryDB clusters can
handle more than 13 trillion requests
per day to support peaks of more
than 160 million requests per second

« Up to 390K read and 100K write
Ui requests per second, up to 1.3 GB/s
i e read OF/s (50 16510 o e 16 %6 cson - | Lne : read and 100 MB/s write throughput*

T per node

* - Based on internal testing on R6g 16xlarge read-only and
write-only workloads

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Durability and high availability

« Amazon MemoryDB stores your
data using a Multi-AZ transactional
log for data durability, consistency,
and recoverability

in-memory database

Moder,miserices AmagnlemaniDS | imemaryspsd My « Supports high availability with data
e replicated automatically across
multiple AZs

« Create a MemoryDB cluster with
Multi-AZ availability with up to five
replicas in different AZs

aws

N7 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scalability

Scale your cluster horizontally by adding/removing shards or vertically by moving to

larger/smaller node types.

Each cluster can have up to 500 shards. Each shard has one primary node and up to five replica

nodes.

You can scale to more than 100 TB of storage per cluster (with 1 replica per shard)

Your cluster continues to stay online and support read and write operations during a resizing

operation.
Scale out Scale up
in minutes in minutes

Scale reads in
minutes

Scale up to 500 shards Scale from
13 to 419 GiB of RAM

aws per node

-

Scale up to 5 replicas

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

When to use Amazon MemoryDB versus Amazon ElastiCache for
Redis?
Amazon MemoryDB for Redis use cases

» Applications requiring a durable database that provides ultra-fast performance

« Applications using Redis's APIs and data structures but looking for durability to avoid
the risk of data loss

» Applications using a cache and a database for low latency and looking to simplify
architecture for saving costs

Amazon ElastiCache for Redis use cases

* For caching workloads where you want to accelerate data access with your existing
primary database

« If you want to use the Redis data structures and APIs to access data stored in a
primary database or data store

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserve

Demo

aws

V

Demo scenarios

= Traditional application writing to
MySQL and reading from MySQL

= Traditional application writing to
MySQL but using Amazon
ElastiCache Redis as a lazy-loading
read cache from MySQL

= Application using Amazon
MemoryDB for Redis as a durable
system of record

aws

vj

D

Web Client ReaderWriter RDS MySQL

=P

K A

Web Client ReaderWriter RDSs MysQL

e

t=|
T

ElastiCache for Redis

ReaderWriter MemoryDE for Redis

Scenario 1: Writing to MySQL

Connect to the database

connection = pymysql.connect(host=' .ap-southeast-1.rds.amazonaws.
com',

user="orly",

password=" ',

database='telemetry',
cursorclass=pymysql.cursors.DictCursor)

cursor = connection.cursor(}

for batches in range(10008):

t@ = time.time()

for rows in range(batchsize):
car_id=randint (10000000, 99999999)
rpm=randint (750, 4000)
water_temp=randint(6@, 99)
oil_temp=randint(8@, 120)
0il_pressure=randint(38, 150)

sql = "insert into cars(car_id, rpm,water_temp,0il_temp,0il_pressure) values(%s,%s,%s,
%s,%s) on duplicate key update rpm=%s, water_temp=%s, oil_temp=%s, oil_pressure=%s"
try:

cursor.execute(sql,(car_id, rpm, water_temp, o0il_temp, o0il_pressure, rpm,
water_temp, oil_temp, o0il_pressure))

except:
print("Ouch..")

connection.commit()

tl = time.time()
rps = batchsize / (t1 - t@)
aws print{("Pid %d Batch %d Rows/sec %5.2f" % (pid, batches, rps)) 23

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scenario 1: Reading from MySQL

Connect to the database
connection = pymysql.connect(host="ENENN I . ap-southeast-1.rds.amazonaws.com',
user='orly',
password="N_. ',
database="'telemetry’,
cursorclass=pymysql.cursors.DictCursor)

cursor = connection.cursor()

keep trying until we get a row

rows = 0

while (rows == 0):
select a random Car ID in a small range so we know it will cache properly
car_id=randint (50000000, 50001000)

sql = "select avg(rpm) rpm, avg(water_temp) water_temp, avg(oil_temp) oil_temp, avg(oil_pressur
rows = cursor.execute(sql, (car_id, car_id))

d = cursor. fetchone()
%>

<table width="80%" align="center">
<trs><td>Metric</td><td>Value</td></tr>

<tr><td>Car ID</td><td><%= car_id %></td></tr>
<tre><td>RPM</td><td><%= d['rpm'] %></td></tr>

<tre><td>Water Temperature</td><td><%= d['water_temp'] %></td></tr=>
<tr><td>0il Temperature</td><td><%= d['oil_temp'] %></td></tr>
<tr><td>0il Pressure</td><td><%= d['o0il_pressure'] %></td></tr>
</table>

</body>

</html>

II” aws 24
> > © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scenario 2: Reading from MySQL with Caching

time to live in cache
TTL = 120

Connect to Redis first and look for the Car ID
host = "N . clustercfg.apsel.cache.amazonaws.com"

startup_node = [{"host": host, "port": "6379" }]
r = r.RedisCluster(
startup_nodes=startup_node,
decode_responses=True,
skip_full_coverage_check=True,
ssl=False

select a random Car ID in a small range so we know it will cache properly
car_id=randint (50000000, 50001000)

try to get the value from the Redis cluster
payload = r.get(car_id)
from_cache="Yes"

if there is no payload, fetch from database and cache it
if (payload == None):
from_cache="No"
print("%s not found in cache" % car_id)
Connect to the database
connection = pymysql.connect (host="NE_ N . ap-southeast-1. rds.amazonaws.c
user='orly',
password="TNIN',
database="'telemetry"',

cursorclass=pymysql.cursors.DictCursor) 25
© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

l aws

Scenario 3: Writing to Amazon MemoryDB

Connect to MemoryDB
host = " .clustercfg.memorydb.ap-southeast-1.amazonaws.com"

startup_node = [{"host": host, "port": "6379" }]
r = rd.RedisCluster(
startup_nodes=startup_node,
decode_responses=True,
skip_full_coverage_check=True,
ssl=False

for batches in range(10000):

t0 = time.time()

for rows in range(batchsize):
generate some random car values
car_id=randint (50000000, 50050000)
rpm=randint (750, 4000)
water_temp=randint(60, 99)
oil_temp=randint(8@, 120)
oil_pressure=randint(30, 150)

store it in the cache
payload = "%s5:%s5:%5:%5:%s" % (car_id, rpm, water_temp, oil_temp, oil_pressure)
r.set(car_id, payload)

tl = time.time()
rps = batchsize / (tl - t@)
print{"Pid %d Batch %d Rows/sec %5.2f" % (pid, batches, rps))

d.connection_pool.disconnect{)
26

. > > © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scenario 3: Reading from Amazon MemoryDB

import pymysql.cursors
from random import seed
from random import randint
import time

import rediscluster as rd
import json

Connect to MemoryDB and look for the Car ID
host = "EEEEEEEEEEE . clustercfg.memorydb.ap-southeast-1.amazonaws.com"

startup_node = [{"host": host, "port": "6379" }]
r = rd.RedisCluster(
startup_nodes=startup_node,
decode_responses=True,
skip_full_coverage_check=True,
ssl=False

select a random Car ID in a small range so we know it will be there
car_id=randint (50000000, 50050000)

try to get the value from the Redis cluster
payload = r.get(car_id)
from_cache="Yes"

if there is no payload, return a fake value (this shouldn't happen!)
if (payload == None):

from_cache="No"

payload = "%5:%5:%5:%5:%s" % (car_id, @, @, @, @)

aws m = payload.split(":", 5) o
© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Visit the AWS Data resource hub

A modern data strategy can help you manage, act on, and react to your data so you can make
better decisions, respond faster, and uncover new opportunities. Dive deeper with these resources
today.

- Harness data to reinvent your organization

- In unpredictable times, a data strategy is key

- Make data a strategic asset

- Rewiring your culture to be data-driven

« Put your data to work with a modern analytics approach
.. and more!

https://tinyurl.com/data-hub-aws

aws

N7 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserv:

ed.

https://tinyurl.com/data-hub-aws
https://tinyurl.com/data-hub-aws

AWS Training and Certification for Data and Analytics

AWS Data & Analytics
FREE Training Resources

Discover how to harness

data, one of the world’s

most valuable resources,
and innovate at scale.

https://bit.ly/3Ntlhy7

aws

\’7

N : >
e

AWS Data Analytics AWS Certified Data
Learning Plan Analytics - Specialty
This learning plan expose you to Earning AWS Certified Data
the fastest way to get answers Analytics — Specialty
from all your data to all your users. validates expertise in usi
It can also help prepare you for the AWS data lakes an

AWS Certified Data Analytics - se
Specialty certification exam. ‘

https://bit.ly/3wBVjD1

iliates. All rights reserved.

https://training.resources.awscloud.com/data-analytics-traincert?trk=3e1e7e14-b314-4f77-a240-fbbc59916f38&sc_channel=el
https://explore.skillbuilder.aws/learn/public/learning_plan/view/97/data-analytics-learning-plan?trk=3e1e7e14-b314-4f77-a240-fbbc59916f38&sc_channel=el
https://aws.amazon.com/certification/certified-data-analytics-specialty/?trk=3e1e7e14-b314-4f77-a240-fbbc59916f38&sc_channel=el
https://bit.ly/3Ntlhy7
https://go.aws/3lwF0RR
https://bit.ly/3wBVjD1

Thank you for attending AWS Innovate - Data Edition

We hope you found it interesting! A kind reminder to complete the survey.
Let us know what you thought of today’s event and how we can improve the event
experience for you in the future.

. aws-apj-marketing@amazon.com

twitter.com/AWSCloud

facebook.com/AmazonWebServices

v

f

. youtube.com/user/AmazonWebServices
. slideshare.net/AmazonWebServices

[twitch.tv/aws

aws
~—"

Thank you!

aws

U

s. All rights reserved.

